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Abstract 

Deck-building games, like Dominion, present an unsolved 
challenge for game AI research. The complexity arising from 
card interactions and the relative strength of strategies de-
pending on the game configuration result in computer agents 
being limited to simple strategies. This paper describes the 
first application of recent advances in Geometric Deep Learn-
ing to deck-building games. We utilize a comprehensive mul-
tiset-based game representation and train the policy using a 
Soft Actor-Critic algorithm adapted to support variable-size 
sets of actions. The proposed model is the first successful 
learning-based agent that makes all decisions without relying 
on heuristics and supports a broader set of game configura-
tions. It exceeds the performance of all previous learning-
based approaches and is only outperformed by search-based 
approaches in certain game configurations. In addition, the 
paper presents modifications that induce agents to exhibit 
novel human-like play strategies. Finally, we show that learn-
ing strong strategies based on card combinations requires a 
reinforcement learning algorithm capable of discovering and 
executing a precise strategy while ignoring simpler subopti-
mal policies with higher immediate rewards. 

 Introduction    

Reinforcement learning has been successfully applied to 

both classical board games, such as checkers (Samuel 1967), 

backgammon (Tesauro et al. 1995), Chess and Go (Silver et 

al. 2018), and complex video games, from early Atari games 

(Mnih et al. 2015) to modern games such as Dota 2 (OpenAI 

et al. 2019). Less attention has been given to more modern 

tabletop games including Eurogames with rule sets which 

allow for far more complex and diverse strategies than those 

found in classical games. For these games, most computer 

agents rely on a mixture of heuristics and search algorithms, 

which do not capitalize on the breadth of strategies these 

games offer and often fail to provide a challenge to experi-

enced players. 

For classical board games, the game state can often be 

represented as either a vector or as a grid, and for video 

games, the rendered image is a natural model input. Modern 

tabletop games do not allow for such a simple representation 
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as they often contain many parts including multiple card 

piles, counters, and complicated maps in addition to a large 

variety of different cards. The field of Geometric Deep 

Learning deals with such non-Euclidean data, including 

graphs and sets, and allows more natural representations of 

such game states (Bronstein et al. 2017).  

A subgenre of Eurogames is deck-building games, which 

require players to build and manage a deck of cards with the 

goal to score the most points. So far, no human-level com-

puter agent has been developed for such games. Dominion1 

is the first game defined by its use of a deck-building me-

chanic (Furino 2019). Individual games of Dominion differ 

significantly, with ten cards randomly chosen from the hun-

dreds of available kingdom cards. Together with the seven 

basic supply cards, they make up the set of all cards used for 

that game, called the kingdom. Cards generally belong to 

one of three categories: Treasure Cards, which provide coins 

to buy new cards; Action Cards, which can be played for a 

variety of effects; and Victory Cards, which give Victory 

Points. The basic supply cards include three Treasure (Cop-

per, Silver, Gold) and three Victory (Estate, Duchy, Prov-

ince) cards, where the latter cards in each group cost more 

to buy and have a disproportionately stronger effect. All 

cards in the supply are available in limited quantities. When 

all Provinces have been bought, or any three card piles are 

depleted, the player with the most Victory Points wins.  

Players start with a weak deck of cards and must improve 

it before focusing on buying Victory Cards. Winning strate-

gies can roughly be classified into three categories: Big 

Money, Rush and Engine. Big Money strategies focus on 

buying Treasure Cards until the player can afford Provinces. 

Rush strategies aim to accumulate cheap Victory Cards as 

fast as possible, often resulting in large, inefficient decks. 

They are competitive only in a subset of kingdoms, for in-

stance, when the Gardens Card is available. Engine strate-

gies take the opposite approach. They are often the strongest 

strategy but require skillfully chaining together Action 

Cards with various effects, aiming to draw the entire deck 

each turn, thus using the owned Treasure Cards to maximum 

 
1 https://www.riograndegames.com/games/dominion/ 



effect. We consider any strategy an Engine strategy if it buys 

and plays a significant amount of Action Cards. 

Up to now agent development for Dominion has largely 

focused on refining Big Money strategies, while ignoring al-

ternative strategies due to their higher complexity and tun-

ing requirements. The configuration of cards included in the 

kingdom can result in any of the three strategies being opti-

mal, and the players must decide which strategy to select. 

Mastering individual mechanics such as trashing is often a 

challenge, with new players failing to understand the im-

portance of deck-control, which includes trashing sub-par 

cards to remove them from the deck, thus increasing its 

overall quality. Developing computer agents capable of 

playing these strategies is necessary if they are to be com-

petitive with human players and is the focus of this work.  

In this paper, we develop a novel, more expressive, mul-

tiset-based representation of the game state of Dominion uti-

lizing advancements in Geometric Deep Learning. Together 

with the Soft Actor-Critic (SAC) (Haarnoja et al. 2018) re-

inforcement learning algorithm, this is the foundation for 

building agents capable of learning the three main strategies 

for Dominion. Without relying on domain-specific modifi-

cations, the model learns a competitive Big Money strategy 

that utilizes Action Cards. Through modifications to the re-

ward function, the training setup, and usage of a heuristic, 

we train agents to utilize the trashing mechanic and to play 

Rush or Engine strategies. We highlight how these results 

require a reinforcement learning approach and discuss the 

difficulties of learning Engine strategies. 

Related Work 

A range of techniques have been used to develop computer 

agents for Dominion. Generic heuristics for simple Big 

Money strategies have been known to the community since 

the game’s publishing (DominionStrategy Wiki 2021). As 

part of “Geronimoo's challenges - First Game” (Geronimoo 

2012), players hand-crafted heuristics for a specific king-

dom which were able to play Engine strategies and win 89% 

of the time against the Smithy Bot, which augments a Big 

Money strategy by using the Smithy Action Card to draw 

additional cards. Scaling these heuristics to support multiple 

kingdoms while maintaining the same strength of play is 

considered unfeasible.  

Fisher (2014) developed Provincial AI which uses an evo-

lution algorithm to learn the optimal card buying heuristic 

for an individual kingdom while relying on hand-designed 

general heuristics and a simple look-ahead model for all 

other decisions, including the playing of Action Cards. Pro-

vincial AI is claimed to be challenging for experienced play-

ers, but no formal evaluation has been made.  

 
2 https://dominion.games/ 

Jansen and Tollisen (2014) proposed a Monte Carlo Tree 

Search (MCTS) based approach using either Upper Confi-

dence Bounds (UCB) or UCB applied to trees, and a novel 

method for dealing with stochastic card drawing and player 

interaction. The algorithms were strong enough to achieve a 

win rate of 68.5% against augmented Big Money heuristics 

using the Witch Card, which draws cards and makes oppo-

nents gain Curses, but were unable to use Action Card com-

binations even after adding heuristics.  

Angelopoulos and Metafas (2021) apply Q-Learning and 

achieve a win rate of 57.44% against three bot opponents. 

They only consider Chapel and Smithy Action Cards and 

limit the agent to buy only the latter. The complexity of 

playing Chapels and the necessity of a smaller state space 

for Q-Learning are the cause for this simplification.  

Techniques combining reinforcement learning with neu-

ral networks have had limited success and have only resulted 

in agents playing Big Money strategies. Winder (2014) 

trains neural networks to make all decisions in a game for 

one kingdom using temporal-difference learning and back-

propagation, hill-climbing, or a genetic algorithm. A genetic 

algorithm using two separate neural networks for the early 

and late parts of the game achieves the best performance and 

wins 74.7% of the games against a Big Money bot. The 

model plays an augmented Big Money strategy but never 

uses the trashing mechanic. Fynbo and Nellemann (2010) 

combine competitive co-evolution and Neuro Evolution of 

Augmented Topologies to develop three models with com-

bine to form an agent. The first is tasked with predicting how 

far the game has progressed, the second learns to evaluate 

the value of different cards, and the third determines in 

which order Action Cards should be played using MCTS. 

The model input is a designed feature vector. They success-

fully train the model for card evaluation but find that a heu-

ristic can outperform the third network. Playing against 

three Big Money Bots in a four-player game, the learned 

agent has a win rate of 54.33%.  

The two commercial Dominion clients offer the oppor-

tunity to play against a computer agent. The agent provided 

by Shuffle IT2 is based on heuristics and is generally re-

garded as weaker than the one developed by Temple Gates 

Games (Duringer 2022). It is based on the techniques intro-

duced by AlphaZero. Their key innovation is that rather than 

representing the cards as one-hot encoded variables, they 

learn card embeddings allowing the agent to play with a 

large variety of Action cards. No rigorous evaluation of the 

play strength has been performed. 

The only formal description of Dominion and deck-build-

ing games, in general, was made by Heijden (2014) who de-

fines the game as a tuple containing the set of cards used, 

functions for determining the end of the game and various 

properties of cards, and multisets to track cards in starting 



deck, current deck, and the hand cards of a player. This for-

mulation ignores the finite number of cards available to buy 

and the existence of Action Cards, which limits its relevance 

to Dominion. Heijden (2014) develops heuristic, MCTS, 

and dynamic programming-based agents for the simplified 

game and shows that, in this case, a Big Money heuristic 

strategy is close to optimal.  

Methodology 

Dominion can be described as an episodic Markov-Decision 

Process (𝑆, 𝐴, p, r), where 𝑆 is the state space, 𝐴 the discrete 

action space, p(𝑠’|𝑠, 𝑎) the transition probability and r(𝑠, 𝑎) 

the reward.  

Each state is made up of the common supply, containing 

the cards which can be gained, the shared trash pile, which 

stores trashed cards, and the status of each player’s deck. 

The deck consists of the cards in the players’ draw and dis-

card pile, their hand, and the Action Cards the player has 

played this turn. Since the draw pile is hidden and the order 

of the cards in the other locations does not matter, we can 

model all of them as multisets, which we call piles. The state 

also contains the current player’s number of Action Points, 

Buys, and Coins.  

The action space includes all possible decisions required 

during a game of Dominion and will be elaborated upon in 

the Decision and Model Structure section. Each action is 

modeled as choosing one card from a variable-size set of 

possible cards.  

The transition probability generally follows the rules of 

the game. While some actions have a deterministic effect, 

such as trashing a card, others, like drawing a card, are sto-

chastic since the order of cards in the draw pile is unknown. 

As stated previously, the game terminates, when any three 

supply card piles are empty or all Provinces have been 

bought. The only addition we make is to terminate the game 

after 40 moves to limit game lengths when the agents are 

playing badly. For stronger agents, this limit has no effect 

on the strategy, as games usually end within 15-30 turns.  

A terminal reward was used, consisting of the difference 

between the player’s and the opponent’s scored victory 

points. A simpler reward, which would only depend on if 

the player won, was not used, as it gives the model no feed-

back on important marginal improvements during training.  

Each player starts with a deck of 7 Copper Treasure Cards 

and 3 Estate Victory Cards, which are shuffled.  

Using this formulation, we can apply a standard model-

free reinforcement learning algorithm to Dominion. Soft 

Actor-Critic (SAC) was chosen due to its good performance 

on many control tasks and the inclusion of a temperature 

term, which encourages more exploration (Haarnoja et al. 

2018). While SAC was originally developed for continuous 

actions, Christodoulou (2019) introduced a discrete formu-

lation. SAC consists of an actor and a critic. The actor, given 

a set of actions, returns the probability with which each ac-

tion should be played. The critic, given a set of actions, de-

termines the expected time-discounted reward for choosing 

each action. The terminal reward was scaled by a factor of 

20 to balance it with the entropy loss introduced by SAC.  

In our agents, the actor and critic models use the same 

backbone and head structure to process the game state, alt-

hough the heads make different predictions. The backbone 

is responsible for converting the game state into a vector 

representation, which the head then uses to evaluate the op-

tions. Both models are trained end-to-end with their own 

backbone. Figure 1 shows the structure of our model struc-

ture. 

The Dominion base game contains 32 unique kingdom 

cards, and 15 expansions have added over 400 more. We 

consider 26 of the base game cards, as they are enough to 

allow Big Money, Rush and Engine strategies, and to pre-

vent the agent from overfitting on one kingdom. 

Game State 

We augment the state by providing the model with each 

player’s current number of Victory Points. As a simplifica-

tion, we do not include the opponent’s total deck composi-

tion in the state representation since the information can be 

derived from the remaining cards in the supply and the cards 

in the player’s own deck. For this paper, we focus on the 

Figure 1: Overview of the model structure. Dashed rectangles represent embedding layers, solid rectangles represent Multi-

Layer Perceptron (MLP) layers and curly parenthesis elementwise max aggregations. 



two-player case, but the representation can easily be ex-

tended to include information for each opposing player.  

Backbone 

The large number of different cards in Dominion makes it 

unrealistic and inefficient to treat each card as a unique class 

(Duringer 2022). Cards often share variations of the same 

basic effects. Therefore, we represent each card as a learna-

ble 16-dimensional embedding. This allows the model to 

learn about multiple cards at the same time.  

To convert any pile, which is made up of a multiset of 

cards, to a vector representation, we first map each card type 

to its embedding and apply a pile specific Multi-Layer Per-

ceptron (MLP). Next, we concatenate the multiplicity of the 

card, and then use another MLP to get a new vector repre-

sentation. Note that this transformation can be done in par-

allel to all cards in the pile, as the operations are permutation 

equivariant, which means permuting the order of cards in 

the input is equivalent to permuting the output (Zaheer et al. 

2018). To aggregate this set of representations into a single 

vector representation of the entire pile, we follow Zaheer et 

al. (2018) and use an element-wise maximum as a permuta-

tion invariant aggregation function, which means that a per-

mutation of the input has no effect on the output. This is fol-

lowed by a final MLP. To allow aggregation with hidden 

layers, we concatenate the set representation to each indi-

vidual element representation in the set and repeat the steps.  

This process, without any hidden layers, is applied to each 

of the piles, and the results are concatenated along with the 

status variables. We then apply a final MLP to get a 32-di-

mensional representation of the game state.  

Decision and Model Structure 

While prior work has focused primarily on optimizing what 

the agent should buy, Dominion requires the player to make 

a diverse set of decisions. Besides choosing which Action 

Card to play, some Action Cards require the player to make 

further decisions when played. While other decision types 

exist in the game, the cards considered in this paper only 

require choosing one or more cards from a multiset of pos-

sible cards. To simplify the decision-making process, we 

model decisions in which more than one card must be cho-

sen as iterated single card decisions, where the set of options 

decreases as decisions are made. While this may make these 

decisions more difficult to learn, almost all decisions the 

agent must make involve only choosing a single card. 

Since this set of actions is unordered but not limited in 

size, we use a set-based representation. This means that both 

the actor and critic models must be permutation equivariant 

with regard to the actions available and deal with sets as both 

an input and an output. As described for the backbone, we 

use the same Set-Aggregation structure with two hidden lay-

ers but do not aggregate the final layer since both actor and 

critic networks require a result per option.  

The output of the actor is a probability distribution over 

the possible actions. Using softmax as the final activation 

function prevented training due to vanishing gradients. We 

therefore linearly rescaled the values to the range [0,1]. 
When sampling to choose the action from this categorial dis-

tribution, the values were treated as the relative probability 

of sampling that class. Further, we use the Tanh activation 

function for all layers in the actor, while we are using ReLU 

in the critic due to the different ranges of outputs.  

To allow a single neural network to make choices for all 

decisions, the actor and critic models of the SAC algorithm 

are passed a decision type, along with the state representa-

tion and the set of options. Similar to the card embedding 

layer, we use a decision embedding layer to get a learnable 

representation of the decision rather than using a one-hot en-

coded vector. The rationale for this choice is that many de-

cisions are very similar. For instance, playing either Mine, 

Chapel, or Remodel all requires choosing card/s to remove 

from the deck. In the case of Mine and Remodel, the deci-

sion is followed by a gain decision, whose options are de-

pendent on the previous trash decision.  

Soft Actor-Critic 

Temperature is a hyperparameter of the original SAC algo-

rithm, which controls how relevant the uncertainty of the ac-

tor’s output is to the loss. In their follow-up work, Haarnoja 

et al. (2019) propose automatically optimizing temperature 

by using the target entropy as the constraint. While the pro-

posed value, −  log(dim(Action Space)), works well with 

continuous action spaces, it does not work in practice with 

the discrete formulation, and considerable effort was spent 

tuning the target entropy.  

Using a variable-size set of options rather than a fixed-

size action space further complicates the tuning since it is 

unclear how the entropy should depend on the number of 

options available. Additionally, decisions are of varying dif-

ficulty and, therefore, should be associated with differing 

levels of certainty. For example, choosing which Action 

Card to play is often easier than determining which card to 

buy. We ignore the difference in entropy for different deci-

sions and use − c log(dim(Available Actions ) − 1) for the 

target entropy to address the changing dimension, where c 

is a tunable hyperparameter, which we set to 0.5. This means 

that the agent should become more uncertain when more ac-

tions are available and decisions with only one or two ac-

tions can be made with very high certainty. 

To further stabilize the temperature during training, we 

used regularization as introduced by Zhou et al. (2022), with 

a scaling value of 0.7. Additionally, we clamped the alpha 

value between 0 and 4. For additional exploration, we take 

a random action 10% of the time. All other hyperparameters 

are listed in the Appendix. 



Training 

This paper aims to develop agents capable of playing the 

various strategies used by humans, rather than achieving op-

timal performance in a specific kingdom. The agent struc-

ture described above is versatile enough to support this, and 

none of the four distinct agents we trained required any 

changes to this structure, besides increasing the size of the 

hidden dimensions for the Engine Strategy. The difference 

in strategy was achieved primarily through changing the 

training setup and interface of the model with the game, thus 

allowing us to keep the model structure the same.  

Like Angelopoulos and Metafas (2020), training was 

done by playing against bots and for some agents by self-

play, which consisted of playing against a second version of 

the agent, like in Winder (2014). We trained all agents on 

kingdoms generated from the 19 kingdom cards listed in the 

Appendix. In the following subsections, we will describe the 

agent and training setup required for each of the strategies. 

Big Money Strategy 

We used a learning curriculum composed of two bots with 

different strengths to ensure that the agent was able to learn 

from the opponent and did not get stuck (Pang et al. 2019). 

The two bots implemented are the Random Bot, which uses 

a uniform distribution to choose the action, and the Big 

Money Bot (DominionStrategy Wiki 2021), which follows 

a big money strategy and is competitive with inexperienced 

human players. The first 100 games were played against the 

Random Bot. Afterwards, we randomly chose which bot to 

play against. For each bot, we tracked the win rate of the 

agent over the last 20 games. After clipping the win rate be-

tween 0.1 and 0.8, the probability of playing against a cer-

tain bot was proportional to the entropy of treating the 

clipped win rate as a Bernoulli distribution.  

Rush Strategy 

The only viable rush strategy, given our selection of cards, 

requires the Gardens card, as it gives Victory Points propor-

tional to the size of the deck. To bias the agent from learning 

a Big Money strategy to learning a Rush strategy, we re-

quired the kingdom to always include the Gardens card.  

Training Using Self-Play 

Developing agents which utilize trashing required adjusting 

the terminal reward function and introducing a term that 

does not depend on the agents score. During training, this 

should prevent agents from focusing only on improving 

their immediate score. However, when training against the 

Big Money Bot, the agents lost consistently and badly, 

which led them to neglect the second objective and only fo-

cus on the score, thus resulting in Big Money strategies. 

Switching to primarily self-play for the remaining agents, 

allowed the agents to play against an opponent, who was 

also pursuing this non-score related goal and followed the 

same development, resulting in a similar performance level.  

Self-play consists of two copies of the agent being trained 

simultaneously and playing against each other. Whenever 

the running score between the agents differs by more than 

40, a copy of the stronger agent replaces the weaker one. To 

encourage the agents to also develop a competitive strategy, 

20% of the games were played by one of the agents against 

a Big Money Bot.  

Big Money with Trashing Strategy 

Trashing can help any non-Rush strategy by removing weak 

cards from the deck. Before developing a complete Engine 

strategy, we trained an agent capable of playing Big Money 

while trashing. We introduced a heuristic to make the trash-

ing decision for the Chapel Action Card by trashing all 

Curses, Estates and Coppers in that order. Additionally, we 

adjusted the terminal reward to include -60 points per Estate, 

Copper or Curse in the deck. Finally, we required the Chapel 

to be part of any kingdom played.  

Engine Strategy 

The key part of any Engine Strategy is the usage of Action 

Cards to draw many cards per turn. This requires the agent 

to buy and play Action Cards, either allowing it to play fur-

ther Action Cards or draw additional cards. Trashing can 

support this goal by removing unwanted cards from the 

deck. Preliminary experiments showed that the agent was 

able to correctly utilize Action Cards once it had them in its 

deck but failed to buy them in sufficient quantities.  

To motivate the agent to play an Engine strategy, we 

changed the starting composition of each player’s deck. We 

defined a deck of 12 cards that can be played as a strong 

Engine capable of consistently buying a Province per turn. 

See the Appendix for the deck composition. The cards were 

set to always be part of the kingdom. For any individual 

game, we sample a random probability 𝑝𝑒𝑛𝑔𝑖𝑛𝑒  and iterate 

12 times, each time taking a card from the standard starting 

card list or the engine card list whenever a new random num-

ber is larger than 𝑝𝑒𝑛𝑔𝑖𝑛𝑒 . 75% of the games starting config-

urations were generated this way, while 25% used the stand-

ard setup. We combined this with the modification with the 

changes made to encourage trashing. 

Training Configuration 

Hyperparameters were tuned manually while learning a Big 

Money strategy and were not changed for other agents. All 

agents were trained for 300,000 steps. Training was com-

pleted on a single NVIDIA RTX A4000 and took approxi-

mately one day per agent. 

Results 

Agents successfully learning their respective target strate-

gies is reflected in a different deck composition, which can 

be seen in Figure 2 and is discussed in more detail in the 

sections below. For all evaluations in the section, we as-

sessed the best model we trained.  Further, we evaluated the 



consistency of the training setups by running each training 

five times on different seeds. As shown in the Training sec-

tion of the Appendix, besides the Engine agent training, all 

trainings were very stable.  

To evaluate the performance of our agents, we compared 

them to the Big Money Bot, which was used during training, 

and Big Money variants, which were modified to utilize ei-

ther the Chapel or the Witch card (Winder 2014; Jansen and 

Tollisen 2014). The Big Money Bot, we used, follows the 

algorithm described on the DominionStrategy Wiki (2021), 

rather than from prior work (Winder 2014; Angelopoulos 

and Metafas 2020; Jansen and Tollisen 2014), as it outper-

forms these implementations. The Witch Action Card is 

bought and played by the Witch and the Double Witch Bot. 

Big Money Strategy 

Trained on kingdoms using any of the nineteen kingdom 

cards, our agent won 73% of its games against the Big 

Money Bot, drawing an additional 8.5% of the games. Com-

pared to the pure Big Money heuristic, the learned strategy 

used various Action Cards when available. It primarily used 

the Witch and Militia Cards, two cards that decrease the 

quality of the opponent’s current hand or deck. On average, 

the agent’s deck contained 15% Action Cards and 62% 

Treasure Cards at the end of the game. Games take 25.4 

turns, and agents score 30.3 points. 

While our agent was trained for two-player games, it can 

play against more opponents without modification. When 

playing against three Big Money Bots, it achieved a win rate 

of 63.5% and outperforms Fynbo and Nellemann (2010) and 

Angelopoulos and Metafas (2020), although they used 

slightly different sets of kingdoms.  

When the pure Big Money Bot is augmented to use the 

Witch Card, it performs considerably better, but adding the 

Chapel did not significantly improve the strength with the 

current heuristic. This is reflected in the same agent only 

winning 54% (4% drawn) of the games against the Single 

Witch Bot, 42% (7.5%) against the Double Witch Bot, and 

76.5% (8.5%) against the Chapel Bot. While performance 

against the Big Money strategy is comparable to Winder’s 

(2014), our agent performs significantly better against the 

augmented Chapel Bot. The main difference between the 

Big Money strategies used by the agent and the Witch Bots 

is that the agent buys too many Action Cards, often never 

drawing the ones bought late into the game or drawing more 

Action Cards per turn than it can play.  

If the relevant Witch Bot was included in training, the win 

rates increased to 59.5% (3.5%) and 57% (5%). Jansen and 

Tollisen (2014) achieve a performance of 68.5% against the 

two Witch bots using MCTS on a single kingdom. To train 

against these bots, the kingdom always included the Witch 

Action Card. This causes the agent to see these cards signif-

icantly more often, and its strategy changed to only using  

Figure 2: Average deck composition by card type of each 

of the four agents developed. 

the Witch Card. The fundamental issue of overbuying Ac-

tion Cards remained.  

Rush Strategy 

The agent converged on a strategy of playing the Woodcut-

ter, Workshop, or Bandit Cards, when available, to gain an 

additional card per turn and the Militia Cards to slow down 

the opponent. It relied on emptying one Action Card, the 

Gardens, and the Estates piles to finish the game as soon as 

possible. This results in the agent’s deck containing 18% 

Action Cards and 49% Treasure Cards at the end. When 

playing against itself, games on average took 28.76 turns 

and agents scored 38.0 points. 

The agent achieved a win rate of 74% (0.5%) against the 

Big Money Bot. There are no prior results published on 

Rush strategies, so we developed our own baseline based on 

the DominionStrategy Wiki (2022), as included in the Ap-

pendix. If the model only encountered Big Money strategies 

in training and did not encounter a Rush strategy, the agent 

was unable to respond to an opponent who also plays a Rush 

strategy, winning only 16.5% (2%) of the games against the 

Gardens Bot. If additionally trained against the Gardens Bot, 

the agent achieved a win rate of 80.5% (12.5%) against the 

Garden Bot, while still winning 49.5% (1.5%) against the 

Big Money Bot.  

Big Money with Trashing Strategy 

The trained agent was able to use the Chapel to reduce the 

number of Coppers and Estates in its deck. Similar to human 

players, the agent bought a single Chapel at the beginning 

of the game. The agent then removed all Coppers and Es-

tates from its deck and used this as a basis to play a Big 

Money Strategy. The agent learned to use Militia, Bandit, 

Witch, Merchant and Market Action Cards. At the end of 

the game, the deck contains 19% Action Cards and 46% 

Treasure Cards, with an average of 0.84 Coppers, 0.34 Es-

tates, and 0.36 Curses cards remaining. This resulted in an 

average game length of 21.0 turns with 31.0 points. Against 

the Big Money Bot, it won 78% (6.0%) of games, and even 

with trashing to counter the Curses, it was only able to win 



39% (2.5%) against Single Witch and 32% (3.5%) against 

Double Witch bots. This performance is comparable to that 

of the Big Money agent, and in a match between the two it 

achieved a 60% (4.0%) win rate.  

Engine Strategy 

The agent developed an Engine strategy that used a combi-

nation of Laboratory and Smithy Cards to draw cards, Vil-

lage, Throne Room and Festival Cards to play additional 

Action Cards, and Chapels to trash Copper and Curses. For 

coins, it used a combination of Festival, Silver, and Gold, 

where some of the Gold was gained via the Bandit Action 

Card. At the end of the game, the deck consisted of, on av-

erage, 60% Action Cards and 22% Treasure Cards. The 

agent trashed somewhat successfully and ended the game 

with 2.57 Coppers, 1.05 Estates and 0.05 Curses. Game fin-

ished on average in 21.8 turns with 24.7 points. 

When playing against the Gardens Bot, the agent 

achieved a win rate of 52% (0.5%), showing that even a 

weak Engine strategy can compete with suboptimal strate-

gies. While the current agent was weaker than the much sim-

pler Big Money Bot, winning only 14% (2%) of the games, 

it is the first agent capable of playing such a strategy.  

The agent sometimes trashed too aggressively, resulting 

in it not having enough money to buy strong cards. As it was 

unwilling to gain Coppers, the agent ended the game with 0 

points. Therefore, the agent will currently lose about 6% of 

games against the Random Bot. Illustrating that while the 

trashing heuristic was required to achieve the current level 

of play, it limits the agent’s control and may hinder the final 

performance.  

Discussion 

Similar to previous work, developing an agent for Dominion 

using reinforcement learning to optimize the win rate leads 

to it learning a Big Money strategy. Due to using a more 

complex neural network, unlike Winder (2014), we did not 

need two separate models for the game stages to outperform 

the baselines. While this required no Dominion specific 

modifications, making an agent learn use trashing or how to 

play an Engine strategy required significant modifications, 

as the complexity of these strategies makes them far more 

difficult to discover and thus learn. For example, for trash-

ing to be a net positive for the agent, it must buy the Chapel 

very early in the game, play it when there are cards on the 

hand that should be trashed and then choose the right cards 

to trash. Discovering this sequence by chance is highly un-

likely. The agent requires samples to learn how to trash but 

initially, playing Chapel causes random cards to be trashed 

which is detrimental to the performance. Therefore, the 

agent will learn not to play or buy Chapels. On the other 

hand, Big Money strategies only require the agent to learn 

to buy cards and any error in the sequence will only slow 

down the agent by a turn or two.  

This rise in complexity and the required precision ex-

plains why search-based approaches, like Jansen and Tol-

lisen (2014), also find Big Money strategies rather than En-

gines. There are significantly more sequences of decisions 

that lead to a strong Big Money solution, and these se-

quences are also considerably shorter than Engine strategies. 

Accordingly, they conclude influencing MCTS to discover 

Engines is difficult since its position evaluation depends en-

tirely on the outcome of the game. Influencing the learned 

policy to be an Engine strategy, on the other hand, is con-

siderably easier when using a reinforcement learning ap-

proach as it requires an easily adjustable reward function. 

Due to the simplicity of the Big Money strategy an agent 

will naturally learn such a strategy first. In most cases buy-

ing and playing any individual Action Card on its own will 

not improve the performance of the Big Money strategy and 

will therefore be judged as a mistake by the reinforcement 

learning algorithm. The only way to learn an Engine strategy 

is to avoid ever learning a Big Money strategy, as SAC’s 

exploration efforts fail to break away from the local maxi-

mum.  

As shown in this paper, we can nonetheless “trick” the 

agent into learning an Engine strategy. This is achieved 

when the algorithm starts playing from a range of starting 

positions: having all necessary cards for an Engine to having 

none. Since playing the Engine is optimal and quicker than 

Big Money in many of these positions, the agent will learn 

such a strategy for those positions and then apply it to the 

others. 

SAC also faces exploration issues when trying to finetune 

its policy, as it fails to explore enough details to find the op-

timal solution. For example, when learning to play a Big 

Money strategy, it consistently runs into issues of overbuy-

ing Action Cards and does not learn to correct this during 

training. It is most likely caused by a combination of the 

small impact of decisions on the overall result and a lack of 

targeted exploration by the agent, as the stochastic explora-

tion used by SAC is not temporally dependent. Even when 

the agent does not overbuy an Action Card due to a random 

exploration decision, it will do so at the next opportunity, as 

the random action is unlikely to repeat. So, the randomness 

of any exploration action is usually smoothed over.  

However, the ineffectiveness of the exploration can be ex-

ploited, to make the agent learn a Rush strategy. Once the 

agent discovers the cheap Gardens cards and is then re-

warded for getting a large deck, it fails to explore alternative 

strategies like Big Money. Note that this only works if Gar-

dens is always available in all kingdoms the agent plays.  



Future Work 

While this paper shows that playing more complicated strat-

egies with higher potential in Dominion is possible, the cur-

rent agents’ performances does not yet reach human levels. 

Moving from an approach that considers only a single action 

to one which operates on sequences of actions promises to 

improve the precision of play. Alternatively, algorithms that 

use search, such as AlphaZero (Silver et al. 2018), should be 

explored. Further, new exploration methods should be de-

veloped which allow the agent to learn trashing in any setup 

as a foundation for playing strong Engine strategies.  

Conclusion 

In this paper, we develop a new model structure to broaden 

the strategies supported by computer agents in Dominion 

beyond Big Money with the goal of playing more human-

like. The model utilizes a multiset-based representation of 

the game state in Dominion, which, compared to prior ap-

proaches allows for better learning of various kingdom cards 

effects and interactions. We adapt the SAC algorithm to 

choose actions from sets of options with variable sizes. This 

allows the agent to make all decisions in Dominion using a 

single model, giving it more flexibility and removing the 

need to rely on heuristics.  

Without any Dominion-specific modifications, our model 

learns to play a Big Money strategy. It is able to beat stand-

ard heuristics on a wide variety of kingdoms but falls short 

of Big Money strategies augmented to use the Witch Action 

Card. We introduce modifications to the agent and training 

process to develop the first agents which use trashing and 

play Rush or Engine strategies.  

Engine strategies are the most difficult to learn due to their 

reliance on the interaction between various Action Cards 

with limited payoff until fully mastered. Current agents are 

limited by having to discover strategies through learning in-

dividual decisions independently. The next level of perfor-

mance will be achieved by agents aware of the sequence in 

which decisions are made. 

Hyperparameters 

Actor, Critic, Alpha Learning Rate = 0.003 

Discount rate = 0.99 

Gradient clipping = 5 Replay Buffer Size = 100000 

Batch Size = 256 

Decision embedding dimension = 4 

The replay buffer was initially filled with 1000 random ac-

tions. 

All hidden dimensions are 32 except for the Engine Agent 

which uses 64 hidden dimensions and a 128-dimensional 

game state representation. This means the Engine Agent had 

117,489 parameters with the other agents having 32,273 pa-

rameters. All weights were initialised using the standard 

PyTorch initialisation.  

Kingdom Cards Used 

Village, Throne Room, Militia, Witch, Bandit, Smithy, La-

boratory, Council Room, Festival, Woodcutter, Workshop, 

Market, Chapel, Moneylender, Remodel, Merchant, Harem, 

Artisan, Gardens 

Gardens Bot 

The Gardens Bot requires both Workshops and Gardens to 

be in the kingdom. The following cards are bought, when 

possible, from highest to lowest priority: Workshops, Gar-

dens, Estates, any Action Card with a cost below 4, which 

has already been bought, Copper. It will play a Workshop, 

whenever it can, to gain a Gardens Victory Card.  

Engine Starting Deck 

2x Village, 2x Smithy, 1x Festival, 1x Chapel, 3x Labora-

tory, 1x Throne Room, 2x Gold 

Training  

Figure 3 shows the Victory Points gained by the agent per 

round per game, calculated as total points scored divided by 

number of turns played. Each agent was trained for five dif-

ferent seeds. The training of the Engine strategy failed to 

learn any good strategy in one run, which was excluded from 

the figure. 

 

Figure 3: Victory Points gained per turn per agent during 

training over 300 thousand steps. The values are not com-

parable between the agents due to different strategies. For 

example, the Rush agent focused on buying Gardens while 

the opponent was buying Provinces, increasing maximum 

points available. Further the Engine agent uses different 

starting states, which allow for a lot quicker scoring. 
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